skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petrova, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. DeVore, R; Kunoth, A (Ed.)
    We determine the best n-term approximation of generalized Wiener model classes in a Hilbert space H. This theory is then applied to several special cases 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  2. Free, publicly-accessible full text available December 4, 2025
  3. We consider the problem of numerically approximating the solutions to a partial differential equation (PDE) when there is insufficient information to determine a unique solution. Our main example is the Poisson boundary value problem, when the boundary data is unknown and instead one observes finitely many linear measurements of the solution. We view this setting as an optimal recovery problem and develop theory and numerical algorithms for its solution. The main vehicle employed is the derivation and approximation of the Riesz representers of these functionals with respect to relevant Hilbert spaces of harmonic functions. 
    more » « less
  4. We prove Carl’s type inequalities for the error of approximation of compact sets K by deep and shallow neural networks. This in turn gives estimates from below on how well we can approximate the functions in K when requiring the approximants to come from outputs of such networks. Our results are obtained as a byproduct of the study of the recently introduced Lipschitz widths. 
    more » « less
  5. This paper studies the problem of learning an unknown function f from given data about f. The learning problem is to give an approximation f^* to f that predicts the values of f away from the data. There are numerous settings for this learning problem depending on (i) what additional information we have about f (known as a model class assumption), (ii) how we measure the accuracy of how well f^* predicts f, (iii) what is known about the data and data sites,(iv) whether the data observations are polluted by noise. A mathematical description of the optimal performance possible (the smallest possible error of recovery) is known in the presence of a model class assumption. Under standard model class assumptions, it is shown in this paper that a near optimal f^* can be found by solving a certain discrete over-parameterized optimization problem with a penalty term. Here, near optimal means that the error is bounded by a fixed constant times the optimal error. This explains the advantage of over-parameterization which is commonly used in modern machine learning. The main results of this paper prove that over-parameterized learning with an appropriate loss function gives a near optimal approximation f^* of the function f from which the data is collected. Quantitative bounds are given for how much over-parameterization needs to be employed and how the penalization needs to be scaled in order to guarantee a near optimal recovery off. An extension of these results to the case where the data is polluted by additive deterministic noise is also given. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Abstract A numerical algorithm is presented for computing average global temperature (or other quantities of interest such as average precipitation) from measurements taken at speci_ed locations and times. The algorithm is proven to be in a certain sense optimal. The analysis of the optimal algorithm provides a sharp a priori bound on the error between the computed value and the true average global temperature. This a priori bound involves a computable compatibility constant which assesses the quality of the measurements for the chosen model. The optimal algorithm is constructed by solving a convex minimization problem and involves a set of functions selected a priori in relation to the model. It is shown that the solution promotes sparsity and hence utilizes a smaller number of well-chosen data sites than those provided. The algorithm is then applied to canonical data sets and mathematically generic models for the computation of average temperature and average precipitation over given regions and given time intervals. A comparison is provided between the proposed algorithms and existing methods. 
    more » « less